
17-08-2010

1

Lower Bounds for Predecessor Search

Mihai Pătraşcu

MADALGO Summer School 2010

Monday, Afternoon I

Results

[van Emde Boas FOCS’75]
Predecessor search in O(n) space, O(lglg u) time

[Pătraşcu, Thorup STOC’06+ Let n1+ε ≤ u ≤ npolylog(n)

Any data structure of size n·logO(1)n requires time Ω(lglg u)

In fact, n/u/space trade-off completely understood 

Colored Predecessor

Color the set red-blue S = { x1, x2, x3, x4, x5, … }

Lower bound holds even for finding color of predecessor

⇒ colored predecessor ≡ predecessor

⇒ existential static 1D stabbing ≡ predecessor

Query stabs a segment ⇔ predecessor is blue

Colored Predecessor

Color the set red-blue S = { x1, x2, x3, x4, x5, … }

Lower bound holds even for finding color of predecessor

⇒ colored predecessor ≡ predecessor

⇒ existential static 1D stabbing ≡ predecessor

⇒ static existential 2D dominance ≡ predecessor

a b0 u

x (x, u-x)

(a, u-b)

17-08-2010

2

Colored Predecessor

a b0 u

x (x, u-x)

(a, u-b)

In general: stabbing in d dimensions
reduces to dominance queries in 2d dimensions

Review: 2D Range Queries

3-sided 4-sided

Rank space: O(1) O(lglg n)

Large universe: Θ(lglg u) Θ(lglg u)

Colored predecessor

4-sided Queries in Rank Space

Predecessor search for u=n4/3 requires time Ω(lglg n)

0 n4/3n2/3 2n2/3

n

0

n2/3

2n2/3

n1/3

n2/3 2n2/3 n

Time for…

The Lower Bound Proof

Let u = n3

Any data structure of size O(n) requires time Ω(lglg n)

17-08-2010

3

Review: van Emde Boas

pred(q, S): if ⌊q/√u⌋ ∈ hash table,
return pred(q mod √u, bottom structure)

else return pred(⌊q/√u⌋, top structure)

0 u√u 2√u

0 1 √u2

0 √u 0 √u 0 √u

O(n) space
O(lglg u) query

Review: van Emde Boas

pred(q, S): if hi(q) ∈ hash table,
return pred(lo(q), bottom structure)

else return pred(hi(q), top structure)

0 u√u 2√u

0 1 √u2

0 √u 0 √u 0 √u

O(n) space
O(lglg u) query

The Hard Instance

Intuition: In one memory probe,
one can at most reduce the universe u↦ √u

0 1 √u2

0 u√u 2√u

0 u√u 2√u

Is hi(q) or lo(q)
relevant?

The First Memory Access

van Emde Boas always tries top first ⇒ read address f(hi(q))
Can easily be fooled (put all elements in a √u interval)

But I can access O(n) memory locations!

I’ll choose among O(√n) options depending hi(q)
and O(√n) options depending on lo(q)

Is hi(q) or lo(q)
relevant?

17-08-2010

4

Updating our Intuition

Simple intuition: In one memory probe,
one can at most reduce the universe u↦ √u

Refined intuition:

• either pred(hi(q), hi(S)) or pred(lo(q), lo(S)) is relevant

• query algorithm can read ≤√n cells as f(relevant part)

Formally

If (∃)k |Sk|≤ √n:

• place query & data set in segment k

• 1st memory access = f(lo(q)) ∈ Sk

query

…

S0={M1, M5} S√u ={M3, M8}…

0 uk√u (k+1)√u

Formally

Otherwise (∀)k |Sk|≥ √n:

• choose T = { O(√n · lg n) cells }⇒ each Sk is hit

• 1st memory access = f(hi(q), lo(q)) ∈ Slo(q)

• make lo(q) irrelevant ⇒ fix to make f(hi(q),*) ∈ T

query

S0={M1, M5} S√u ={M3, M8}

…

…

0 1 √u2 0 u√u 2√u

What Did We Prove?

If there exists a solution to Pred(n, u) with:

– space complexity: O(n)

– query complexity: t memory reads

⇒

There exists a solution to Pred(n, √u) with:

– space complexity: O(n)

– O(√n · lg n) “public cells”

– query complexity: t-1 memory reads

… can be read
free of charge

17-08-2010

5

Induction?

Induction:

Pred(n,u) ↦ Pred(n,√u) ↦ Pred(n,u¼) ↦… ↦ Pred(n,u1/t)

time t ↦ time t-1 ↦ time t-2 ↦… ↦ time 0

Base case: If u1/t ≥ 2, cannot solve with no memory access! *

* Except o(n) public bits.

Dealing with Public Bits

Hardness based on hiding one bit:

In 2nd round, there are O(√n · lg2n) public bits about the input!

New idea: Pred(n, u) = k × Pred(n/k, u/k)

k≫ √n · lg2n ⇒ With O(√n · lg2n) public bits,
most sub-problems are still hard.

0 1 √u2 0 u√u 2√u

0 u√u 2√u

0 uu/k 2(u/k)

New Induction Plan

Main Lemma: Fix algorithm to read from a set of (nk)½ cells
“Proof”:

• problem j is nice if (∃)α: |Sα
j| ≤ (n/k)½

⇒ fix hi-part in problem j to α

• problem j is not nice if (∀)α: |Sα
j| > (n/k)½

⇒ choose T to hit all such Sα
j

…problem 1 problem kproblem 2

New Induction Plan

Set u=n3 and k = n¾

Time Public bits
Pred(n, n3) t 0

↦ Pred(n, n1.5) ↦ n¾ × Pred(n¼, n¾) t-1 √n

↦ n¾ × Pred(n¼, n3/8) ↦ ··· t-2 n7/8

…problem 1 problem kproblem 2

universe: √uuniv. per problem

u½/k
next universe:

(u½/k)½

17-08-2010

6

Main Lemma: “Proof” ↦ Proof

Main Lemma: Fix algorithm to read from a set of (nk)½ cells

But: Public bits = f(database)

1st cell read by query = f(public bits)

Look at what query does ⇒ Fix some problem adversarially
⇒ public bits change ⇒Query does something else!

• problem j is nice if (∃)α: |Sα
j| ≤ (n/k)½

⇒ fix hi-part in problem j to α

• problem j is not nice if (∀)α: |Sα
j| > (n/k)½

⇒ choose T to hit all such Sα
j

Main Lemma: “Proof” ↦ Proof

New claim. We can publish (nk)½ cells such that:
Pr*random query reads a published cell+ ≥ 1/100

Induction: If initial query time < (lglg u)/100
⇒ at the end E[query time] < 0 ⇒ contradiction

Proof:

• Publish random sample T = { (nk)½ cells }

• For each problem j where lo(q) is relevant (fixed hi=α)
publish Sα

j only if |Sα
j| ≤ (n/k)½

An Encoding Argument

Impossible: Encode A[1..k] ∈ {0,1}k with less than k bits on avg.

Proof by contradiction:

• Assume Pr[random query reads a published cell] < 1/100

• Use this data structure to create an impossible encoder.

The Encoding

1. Generate one random query/subproblem (q1, q2, …, qk)

2. Generate random database depending on queries:
A[j]=0 ⇒ lo(qj) is relevant in problem j
A[j]=1 ⇒ hi(qj) is relevant in problem j

3. Write public bits = f(database) → o(k) bits

4. Classify queries: when |Shi(qj)
j| ≤ (n/k)½ query is  iff A[j]=0

when |Shi(qj)
j| > (n/k)½ query is  iff A[j]=1

5. By assumption, E[number of  queries+ ≥ 99% k
So decoder can learn 99% of A[1..k] from public bits!

6. Write in encoding which guesses are wrong

→ lg (k choose k/100)≪ k bits

