17-08-2010

Lower Bounds for Predecessor Search

Mihai Patrascu
& atat

MADALGO Summer School 2010
Monday, Afternoon |

Results

[van Emde Boas FOCS'75]
Predecessor search in O(n) space, O(lglg u) time

[Patrascu, Thorup STOC’06] Let nl*e< y < prolylogn)
Any data structure of size n-log®®n requires time Q(lglg u)

In fact, n/u/space trade-off completely understood ©

min

Colored Predecessor

Colorthe set red-blue S={x, %, X5, Xy, Xg, «.. }

Lower bound holds even for finding color of predecessor
= colored predecessor = predecessor
= existential static 1D stabbing = predecessor

— — o

Query stabs a segment < predecessor is blue

Colored Predecessor

Color the set red-blue S ={xy, X,, X3, X4 Xs, «.. }

Lower bound holds even for finding color of predecessor
= colored predecessor = predecessor
= existential static 1D stabbing = predecessor
= static existential 2D dominance = predecessor

T —A)
0 a u

(a, u-b)
°

17-08-2010

Colored Predecessor

In general: stabbing in d dimensions
reduces to dominance queries in 2d dimensions

i (x, u-x)
0 a u

(a, u-b)|
)

Review: 2D Range Queries

3-sided 4-sided

Rank space: 0(1) O(lglgn)
. . o
Large universe: @(Iglg{ O(lglgu) NSO‘\%“
Wi

Colored predecessor

4-sided Queries in Rank Space

Predecessor search for u=n%3 requires time Q(lglg n)

+ t + t o o—t>
0 n¥3 W\ 2n¥3, 4 n“3
N \ \}
\ \ \ Vi
\ /

n
wTAT ¥
7
P 4
ni/3
2n?/
n23
0 n23 2n23

Time for...

The Lower Bound Proof

Let u=n3
Any data structure of size O(n) requires time Q(Iglg n)

17-08-2010

Review: van Emde Boas

pred(q, S): if |g/vu| € hash table,
return pred(g mod vu, bottom structure)

else return pred(|g/vu], top structure)
012 vu 0O(n) space
¥ h \?\ O(lglgu) query

Review: van Emde Boas

pred(g, S): if hi(q) € hash table,
return pred(lo(q), bottom structure)

else return pred(hi(q), top structure)
012 vu 0O(n) space
¥ " \?\ O(lglg u) query

The Hard Instance

Intuition: In one memory probe,
one can at most reduce the universe u = vu

The First Memory Access

van Emde Boas always tries top first = read address f(hi(q))
Can easily be fooled (put all elements in a vu interval)

But I can access O(n) memory locations!

I’ll choose among O(Vn) options depending hi(q)
and O(vVn) options depending on lo(q)

Is hi(q) or lo(q)
relevant?

17-08-2010

Updating our Intuition

Simple intuition: In one memory probe,
one can at most reduce the universe u = Vu

Refined intuition:
« either pred(hi(q), hi(S)) or pred(lo(q), lo(S)) is relevant
* query algorithm can read <vn cells as f(relevant part)

Formally
So=(My, Mg} vee Sw=(Ms, Mg}
— —_
t t t t t t > query
111 111
%;%%9 %o%o'%o'
00

If(3)k |Sc|<vn:
* place query & data set in segment k
* 1tmemory access = f{lo(q)) €S,

} t t fosto—oot t t
0 ku (k¥ l)vu u

Formally
Se=(My, M} Vs S5, =M, M}
'T T T' t t t 'Iif query
%;%%9 %o%o'%o'
0,0’%0’42 cee 27

Otherwise (V)k |S; |2 vn:

» choose T={0O(vn-lgn)cells } = each S, is hit

+ 1tmemory access = f(hi(q), 10(q)) € Sio(q

» makelo(q) irrelevant = fix to make f(hi(q),*) € T

Hoiotstotots M) —+—o—t t t t t
012 vu 0 vu 2vu

What Did We Prove?

If there exists a solution to Pred(n, u) with:
— space complexity: O(n)
— query complexity: t memory reads

=

There exists a solution to Pred(n, Vu) with:

— space complexity: O(n)
— O(Vn - Ig n) “public cells” free of charge

— query complexity: t-1 memory reads

17-08-2010

Induction?

Induction:

Pred(n,u) + Pred(n,vu) = Pred(n,u”) ...

- Pred(n,ul/t)
timet - time t-1

- time t-2 ... Ptime0

Base case: If u/t> 2, cannot solve with no memory access! *

* Except o(n) public bits.

Dealing with Public Bits

Hardness based on hiding one bit:

012

In 2" round, there are O(vn - Ig2n) public bits about the input!

New idea: Pred(n, u) = k x Pred(n/k, u/k)

0 u/k 2(u/k)

k> vn-lgZn = With O(vn - Ig2n) public bits,
most sub-problems are still hard.

New Induction Plan

problem 1 problem 2 problem k
r 4. ~r - - see - .
Sy s oF 2 oF %
‘eade Y ead €2 (eade) ead e (eade > (ead €S
ey ey P L, ey

Main Lemma: Fix algorithm to read from a set of (nk)* cells
“Proof”:

* problemjisniceif (I)a: S]] < (n/k)*
= fix hi-part in problemj to a

* problemjis not nice if (¥)a: S| > (n/k)*
= choose T to hit all such S

A 1 2 2
(e’édes‘ read €% reade%(ead e
. greelionmny, oy

New Induction Plan

problem 1 problem 2

problem k

X x
(ead €St (ead €S

=

next universe:

(w/k)*

univ. per problem
u*/k

Set u=n3and k = n*

Pred(n, n3)
— Pred(n,n'®) +— n%x Pred(n”, n*) t-1 vn

= n%xPred(n% n¥8) > e

17-08-2010

Main Lemma: “Proof” — Proof

Main Lemma: Fix algorithm to read from a set of (nk)* cells
* problemjisniceif (I)a: |S,| < (n/k)*
= fix hi-partin problemjto a
* problemjis notniceif (V)a: |Syi| > (n/k)*
= choose T to hit all such S,

But: Public bits = f(database)
15t cell read by query = f{public bits)

Look at what query does = Fix some problem adversarially
= public bits change = Query does something else!

Main Lemma: “Proof” ~ Proof

New claim. We can publish (nk)” cells such that:
Pr[random query reads a published cell] > 1/100
Induction: If initial query time < (Iglg u)/100
= at the end E[query time] <0 = contradiction

Proof:

* Publish random sample T = { (nk)* cells }

* Foreach problem j where lo(q) is relevant (fixed hi=a
publish S only if [Sj| < (n/k)*

An Encoding Argument

Impossible: Encode A[1..k] € {0,1}with less than k bits on avg.

Proof by contradiction:
* Assume Pr[random query reads a published cell] < 1/100
¢ Use this data structure to create an impossible encoder.

The Encoding

1. Generate one random query/subproblem (g4, g, ..., Gi)
2. Generate random database depending on queries:

Alj]=0= lo(g;) is relevant in problem j
Alj]=1= hi(g;) is relevant in problem j

3. Write public bits = f{database) - o(k) bits
4. Classify queries: when Sy | < (n/k)* query is © iff A[j]=0

when [Syiqf| > (n/k)”* query is © iff A[j]=1

5. Byassumption, E[number of ® queries] > 99% k

So decoder can learn 99% of A[1..k] from public bits!

6. Writein encoding which guesses are wrong

- Ig (k choose k/100) < k bits

